Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam January 2017: Problem 1 Solution

Exercise. The sum A + B of two subsets of \mathbb{R}^n is

 $A + B = \{x + y : x \in A, y \in B\}$

(a) Show if A is closed and B is compact, then A + B is closed.

Solution.

Let $(a_n) \subseteq A$ and $(b_n) \subseteq B$. Also let $(z_n) = (a_n + b_n) \subseteq A + B$ s.t. $(z_n) \to z$. We want to show that $z \in A + B$. Since A is closed, $\underline{if}(a_n)$ converges then $(a_n) \to a \in A$ Since B is compact, $\exists a$ subsequence $(b_{n_k}) \subseteq (b_n)$ s.t. $(b_{n_k}) \to b \in B$ $z_n = a_n + b_n \implies a_n = z_n - b_n$ $\Rightarrow a_{n_k} = z_{n_k} - b_{n_k}$ Since (z_n) converges, $(z_{n_k}) \subset (z_n)$ converges. $\implies (z_{n_k} - b_{n_k})$ converges $\implies (a_{n_k})$ converges Since $(a_{n_k}) \subset A$ and A is closed, $(a_{n_k}) \to a \in A$. Thus, $z = a + b \in A + B$, and A + B is closed.

(b) Show sum A + B of two compact subsets of \mathbb{R}^n is compact

Solution.

Let $(z_n) \subset A + B$ be a sequence. Then $(z_n) = (a_n + b_n) \subset A + B$ and $(a_n) \subset A$ and $(b_n) \subset B$ Since A and B are compact, \exists subsequences $(a_{n_k}) \subset (a_n)$ and $(b_{n_k}) \subset (b_n)$ s.t. $(a_{n_k}) \rightarrow a \in A$ and $(b_{n_k}) \rightarrow b \in B$ \Rightarrow $(a_{n_k} + b_{n_k}) \rightarrow a + b \in A + B$ \Rightarrow $(z_{n_k}) \rightarrow a + b \in A + B$ and $(z_{n_k}) \subset (z_n)$ \Rightarrow A + B is compact (c) Show the sum of two closed sets is not necessarily closed.

Solution.				
	$A = \mathbb{N}$	and	$B = \{-n + \frac{1}{-} : n \in \mathbb{N}\}$	are both closed
\Rightarrow	$\left(\frac{1}{n}\right) \subset A + B$	and	$\left(\frac{1}{n}\right) \to 0 \notin A + B$	
\implies	A + B is not closed			