Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam
 January 2017: Problem 1 Solution

Exercise. The sum $A+B$ of two subsets of \mathbb{R}^{n} is

$$
A+B=\{x+y: x \in A, y \in B\}
$$

(a) Show if A is closed and B is compact, then $A+B$ is closed.

Solution.

Let $\left(a_{n}\right) \subseteq A$ and $\left(b_{n}\right) \subseteq B$. Also let $\left(z_{n}\right)=\left(a_{n}+b_{n}\right) \subseteq A+B$ s.t. $\left(z_{n}\right) \rightarrow z$.
We want to show that $z \in A+B$.
Since A is closed,

$$
\underline{\text { if }}\left(a_{n}\right) \text { converges then }\left(a_{n}\right) \rightarrow a \in A
$$

Since B is compact,

$$
\begin{aligned}
\exists \text { a subsequence }\left(b_{n_{k}}\right) & \subseteq\left(b_{n}\right) \text { s.t. }\left(b_{n_{k}}\right) \rightarrow b \in B \\
z_{n}=a_{n}+b_{n} & \Longrightarrow \\
& \Longrightarrow
\end{aligned} \begin{gathered}
a_{n}=z_{n}-b_{n} \\
a_{n_{k}}=z_{n_{k}}-b_{n_{k}}
\end{gathered}
$$

Since $\left(z_{n}\right)$ converges, $\left(z_{n_{k}}\right) \subset\left(z_{n}\right)$ converges.

$$
\begin{array}{ll}
\Longrightarrow & \left(z_{n_{k}}-b_{n_{k}}\right) \text { converges } \\
\Longrightarrow & \left(a_{n_{k}}\right) \text { converges }
\end{array}
$$

Since $\left(a_{n_{k}}\right) \subset A$ and A is closed, $\left(a_{n_{k}}\right) \rightarrow a \in A$.
Thus, $z=a+b \in A+B$, and $A+B$ is closed.
(b) Show sum $A+B$ of two compact subsets of \mathbb{R}^{n} is compact

Solution.

Let $\left(z_{n}\right) \subset A+B$ be a sequence. Then

$$
\left(z_{n}\right)=\left(a_{n}+b_{n}\right) \subset A+B \quad \text { and } \quad\left(a_{n}\right) \subset A \quad \text { and } \quad\left(b_{n}\right) \subset B
$$

Since A and B are compact, \exists subsequences $\left(a_{n_{k}}\right) \subset\left(a_{n}\right)$ and $\left(b_{n_{k}}\right) \subset\left(b_{n}\right)$ s.t.

$$
\begin{array}{cccc}
& \left(a_{n_{k}}\right) & \rightarrow a \in A & \text { and }
\end{array} \quad\left(b_{n_{k}}\right) \rightarrow b \in B
$$

(c) Show the sum of two closed sets is not necessarily closed.

Solution.

$$
\begin{aligned}
& A=\mathbb{N} & \text { and } & B=\left\{-n+\frac{1}{n}: n \in \mathbb{N}\right\} \quad \text { are both closed } \\
\Longrightarrow & \left(\frac{1}{n}\right) \subset A+B & \text { and } & \left(\frac{1}{n}\right) \rightarrow 0 \notin A+B
\end{aligned}
$$

